The Training Material on “Risks Management (including International Conventions)” has been produced under Project Sustainable Human Resource Development in Logistic Services for ASEAN Member States with the support from Japan-ASEAN Integration Fund (JAIF). Copyright Association of Southeast Asian Nations (ASEAN) 2014. All rights reserved.
Sustainable Human Resource Development in logistics services for ASEAN Member States
TOPICS ON RISK MANAGEMENT

• Concepts
• Measurement
• Project Risk Management
• Legal Liability
 • Product Liability
• Safety and The Human Factor
• Fire Risk Control
• Marine Risk Management
Risk Management

Risk management is essentially a multi-disciplinary process where different skills and disciplines are brought together in risk problem solving. Managing risk implies a four-stage approach:

• Risk identification – recognize risk that threaten the assets and earning of company
• Risk Measurement – estimate probability and possible severity
Risk Management

• Risk Control – measure to avoid occurrence, limit its severity and its consequences
• Risk financing – determine likely costs and ensure financial resources are available

Cost of risk which can be measured in terms of cost of 3 variables:
• risk control measures
• uninsured losses
• insurance
Risk Management
RISK MANAGEMENT

Elements of Contract

- Offer and Acceptance
- Consideration
- Capacity to contract
- Legality
- Good Faith
Concept of Risk

Risk is defined as:
• Hazard
• Chance of bad consequence
• Loss
• Exposure to mischance

Can cause harm or loss but some risks caused both loss and gain (usually to different people as with extra work that a repairer gains after a bad storm)
Risk Analysis

Risk Management Framework©

Risk Analysis

Risk Category
- Functional
- Facilities
- IT Client
- IT Network
- Business Disruption
- Business Bays-in
- User Readiness
- DR Readiness
- Environment Readiness
- Data Readiness
- Resourcing
- Control
- Communication
- 3rd Party System

Risk Relevance
- Project / Programme
- Implementation / Rollout
- Deployment (BAU)

Mitigation Type
- Replan
- Activate Fallback
- Monitor & Manage
- Reduce
- Eliminate

Risk and BC Plan

Impact Level
- Mitigations
- Governance Board
- Cutover Exec Board

Project / Programme Risks
- Implementation / Rollout Risks
- Business Continuity (BAU) Risks

Time

Control
- Test
- Review
- Monitor
The most underestimated business risks for 2013

The “hidden” risks shown were identified by Allianz experts as most underestimated by businesses. All of these risks received less than 10 percent or even less then 5 percent of the overall responses (843).

Source: Allianz Global Corporate & Specialty

Bangkok 25 June 2014 Rev 1.0
Top 10 global business risks for 2013

1. Business interruption, supply chain risk (45.7%)
2. Natural catastrophes (e.g. storm, flood, earthquake) (43.9%)
3. Fire, explosion (30.6%)
4. Changes in legislation and regulation (17.1%)
5. Intensified competition (16.6%)
6. Quality deficiencies, serial defects (13.4%)
7. Market fluctuations (e.g. exchange or interest rates) (12.6%)
8. Market stagnation or decline (12.3%)
9. Eurozone breakdown (12.1%)
10. Loss of reputation or brand value (10.4%)

The Allianz “Risk Barometer” survey was conducted among risk consultants, underwriters, senior managers and claims experts in the corporate insurance segment of both Allianz Global Corporate & Specialty and local Allianz entities. Figures represent the number of responses as a percentage of all survey responses (843).

Source: Allianz Global Corporate & Specialty
Checklist: identifying Risk

Key management decisions

<table>
<thead>
<tr>
<th>Management selection</th>
<th>Business Type</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk profile</td>
<td>Equipment</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td>Potential</td>
</tr>
<tr>
<td>Mode of operation</td>
<td></td>
<td>Profit or loss</td>
</tr>
<tr>
<td>Uniqueness</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checklist: identifying Risk

Key management decisions

<table>
<thead>
<tr>
<th>Risk management</th>
<th>Business type</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationships</td>
<td>Market total size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Competitor activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price acceptability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Government restraint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suppliers</td>
<td></td>
</tr>
<tr>
<td>Considerations</td>
<td>Technical developments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Political</td>
<td>Inter-relationship</td>
</tr>
<tr>
<td></td>
<td>Social</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical environment</td>
<td></td>
</tr>
</tbody>
</table>
Checklist: identifying risk

Key management decisions

<table>
<thead>
<tr>
<th>Management selection</th>
<th>Business type</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectations</td>
<td>Achievable volume and price</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost pattern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dependencies</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Staffing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Competence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commitment</td>
<td></td>
</tr>
</tbody>
</table>
What to measure?

1. Probability (or frequency)
2. Severity - likely severity
 - possible severity

Minor Moderate Major Critical
What to measure?

There is a relationship between frequency and severity:

1. Small regular loss
 - sufficient size of sample needed;
 - we can then say: if the world does not change this will probably happen.

To measure the future we need to know:

- size of error if no change;
- areas of possible change;
- extent of possible change.
What to measure?

2. Medium irregular loss:
 - what could happen?
 - how often?
 - what can we do about it?

3. Large very rare loss:
 - what would happen?
 - how much could it cost?
 - how will we finance it?
PREPARING AND USING STATISTICS

1. Review available statistics
 - Who prepared?
 - For what purpose?
 - When?
 - How were they collected?
 - Has there been any change in basis?
 - Is there detectable bias in presentation?
 - Is there any motivation for bias?
PREPARING AND USING STATISTICS

2. **Preparation of statistics:**
 - Determine what is needed;
 - Review what data is available;
 - Build a simple mathematic model of relationship

3. **When analysing statistics:**
 - Take note of any evident trends;
 - Try to find realistic explanation for trend
 - Consider any current trends that are not yet apparent;
 - Don’t brush aside any inconsistencies (let doubts nag);
PREPARING AND USING STATISTICS

4. In presenting statistics:
 • Avoid unnecessary detail;
 • Limit number of significant figures per numbers to 3 or 4;
 • Make sure conditions of presentation are clearly stated;
 • Take care to ensure decision makers understand implications;
 • If conditions have changed since statistics were prepared, say so.
PREPARING AND USING STATISTICS

When using different sources, bring them to a common basis and state your assumptions. 3 factors will usually give corrected loss statistics year by year:

• Inflation
• Exposure in Units
• Other Exposure Factors
CATASTROPHIC LOSSES

The sources of key big losses can be reviewed under:

• Large earnings dependence (20% earnings or more).
• Large values at risk in single location.
• Events outside that could cause loss of earnings, or result in large diminution of asset value or stock market valuation.
Catastrophic Losses

Approximately 37 percent said loss of data would result in decreased revenues and 41 percent worried about increased expenses. The top two results of losing data were brand damage and loss of customers.
Sustainable Human Resource Development in logistics services for ASEAN Member States

▶ DEVASTATION FOLLOWS a magnitude 9.0 earthquake and tsunami that struck 80 miles from Sendai, Japan, on March 11. Thousands are dead and damages could exceed $35 billion.
UNDE3TER3ND3NG RISK REASON3S

Risks result in injury and loss for a number of reasons:

1. Lack of awareness – failure to recognise either possibility or circumstances of risk.
2. Lack of capability – may result from lack of knowledge, competence, resources or practical training.
3. Lack of motivation – This can vary from indifference to deal with the problem.
PROJECT MANAGEMENT
Sustainable Human Resource Development in logistics services for ASEAN Member States

PROJECT MANAGEMENT

INTEGRATED PROJECT MANAGEMENT

Business Needs

Resources and Budget

Critical Decisions

Project Goals

The Team

Stakeholders

Issues and Risks

Workplan and Timings

COMMUNICATIONS
Critical Path Analysis (CPA), is sometimes called Network Analysis

It is a tool used to plan activities so that a job can be completed in the shortest time

It breaks a job down into a number of tasks, and looks at the dependency of them

> For example, list the activities that must be completed in order to make a cup of coffee

It is used commonly in manufacturing and construction
PROJECT MANAGEMENT

There are several methods

1. Description of project with plans and diagrams including neighbouring areas and access route.
2. Critical Path Analysis charts, review their accuracy, dependencies data relating to time and pre-conditions check for each step in CPA.
3. Check list to specify all possible problems.
4. Monitoring essential including all environment factors (may also show new techniques for risk control).
PROJECT MANAGEMENT

5. Hold review conference where:
 - project staff present the project details;
 - sympathetic short critical review from team not associated with project;
 - agreement on problem areas and methods of risk control;
 - establishment of monitoring mechanism
Sustainable Human Resource Development in logistics services for ASEAN Member States
LEGAL LIABILITY

The contemporary legal systems of the world are generally based on one of three basic systems: civil law, common law, and religious law – or combinations of these. However, the legal system of each country is shaped by its unique history and so incorporates individual variations.
LEGAL LIABILITY

Contract Law
- company and corporate legal basis
- contract essentials, e.g. Offer and acceptance

Private Law
- rights and responsibilities
- remedies
- relevant to corporate activity
LEGAL LIABILITY

International Law
- character and evolution
- corporate implications
- extra legal situations – political risk

Statutory bodies
- legal basis for existence
- powers
- responsibilities
- extra legal situations
LEGAL LIABILITY

Some legal responsibilities and situations

- tort
- crimes
- contracts
- some specific legal problems for companies
 - products
 - employees
- third parties
- libel and slander
- patent infringement
- statutory compliance
LEGAL LIABILITIES

Woman and hotel settle lawsuit over wet floor slip

VIP Hotel accepts 50% liability for fall that left her wheelchair-bound

By K.C. VIJAYAN

A FORMER endurance racing driver left using a wheelchair after she slipped on a hotel lobby’s wet floor settled her court suit yesterday, with the hotel accepting 50% liability for the accident.

Mrs Pamela Mykytowycz, 49, is the only woman in the world to have successfully completed the 15,000km “Peking to Paris” rally in 2007 and 2010.

But the London-based managing director fell in the VIP Hotel near Newton MRT in May 2011, twisting her ankle and injuring her left knee and back.

Further complications meant she now suffers from “complex regional pain syndrome” – a condition that leads to bouts of pain in different areas of the body.

She sued the hotel for negligence and is seeking $5 million in damages for business losses, future earnings and medical costs. If successful, she will get 50 per cent of the amount.

Yesterday’s agreement in the High Court has paved the way for both parties to meet and have the damages to be paid assessed by a court registrar. It is understood the hotel’s insurers will avoid a lengthy trial and save practical reasons.

This pre-empted court proceedings later this month that have seen Australian spec materials scientist Richard Kornblum provide expert evidence.

Mrs Mykytowycz, on the insistence of wet marble floor reviewed CCTV footage, partially blamed her accident.

The hotel had prepared a British expert, a consulting forensic engineer and an official of the Slip Resistance Group to testify on its behalf.

Mrs Mykytowycz said she was staying at the hotel to be with engineer husband Andrew, who had been deployed here from Australia. Prior to the accident, she had been working as a successful senior executive in the health and social care sector. She was also the managing director of her own health-care services consultancy.

She even appeared in the 2007 Travel Channel series Peking To Paris in which she won the Coupe de Dames. The show culminated with the announcement of her engagement to her husband – a fellow competitor. But the accident reversed her active lifestyle.

“I now face a lifetime of unremitting pain, limited mobility and eventual deterioration which has already left me using a wheelchair,” she said.

The hotel, defended by lawyer Ramesh Appoo, had initially resisted her suit, arguing that she had lost her balance because she was careless, failed to put on proper footwear and did not keep a proper lookout for water on the floor.

Mrs Mykytowycz credited her lawyers Sandra Ibrahim and Dominique Chua for helping to settle the liability issue and speed up the process after her two-year ordeal.

She said: “The reality is that if I lost, I would have been bankrupted. I can’t work the way I was before because I can’t concentrate with the pain and everything else.

“This was for me to get the hotel to acknowledge what happened on principle, and secondly to safeguard my future as I know I need to be looked after.”

Pamela Mykytowycz, 49, now suffers from complex regional pain syndrome. (ST PHOTO: ALPHONSE LIM)

vijayan@spth.com.sg

Bangkok 25 June 2014 Rev 1.0
Invalid issues friend, gets $250k

Friend caused bike crash that led to son's present

BY THAM YUEN-C

He did not have a driver's licence, and was also drunk. But Mr Thangaraju Subramaniam ended up riding his friend Simon Silva's bike after the two went on a drinking session on Feb 25, 2007.

While travelling along Corporation Road, the bike skidded, flinging Mr Silva into a tree. His spine was fractured in many places and he also sustained head injuries. On his first two nights in intensive care, doctors had said he could die any time.

However, he recovered after spending more than a month in hospital. When Mr Thangaraju - who was 41 - said he suffered minor injuries - saw that his friend had recovered after a few months, he started to work and resumed his diploma studies, he sent him to a psychologist. Mr Silva ended up in a vegetative state after Mr Silva ended up in a vegetative state after the accident.

Mr Silva's lawyer Pratim Singh Gill produced evidence from a neurosurgeon that linked the later injuries to those from the traffic accident.

Ever since his son became bedridden and was forced to live off a feeding tube, Madam Asotha has had to quit her job to tend to his needs. The divorcee feeds and cleans him daily without help, and also looks out the phlegm in his throat at least six times a day to prevent blockage.

She said Mr Silva's older brother does not help out with the family expenses as he has to take care of his own family.

The monthly cost of adult diapers, catheters and medical supplies is some $500. In a year, Mr Silva's upkeep can amount to $12,000.

Madam Asotha has tried to save where she can, by turning out the lights in her three-room Housing Board flat in Jurong West Street 42 and limiting her use of electrical appliances.

She turns on the fan and radio only in Mr Silva's room so he can be comfortable. About two months ago, her electricity supply was almost cut off.

"I have been borrowing from friends. I will leave it to God," she said.

In deciding the amount of the award, Mr Silva's liability in the accident was taken into account, said the insurer's lawyer Cecilia Lee Thomas.
PRODUCTS LIABILITY

DRUGS
EDIBLE PRODUCTS
AUTOMOBILE PRODUCTS
BABY PRODUCTS

TOYS
ELECTRONICS
COSMETICS
LEISURE TIME GOODS

DEFECTIVE PRODUCTS

When Something
Ruins Everything
PRODUCT LIABILITY

This is legal liability for injury or loss suffered by a user as a result of defective products or services. *Donoghue v Stevenson* [1932] is a foundational case in English tort law by the House of Lords. It created the modern concept of negligence, by setting out general principles whereby one person would owe another person a duty of care.
PRODUCT LIABILITY

Also known as the "Paisley snail" or "snail in the bottle" case, the facts involved Mrs Donoghue drinking a bottle of ginger beer in a café in Paisley, Renfrewshire. A dead snail was in the bottle. She fell ill, and she sued the ginger beer manufacturer, Mr Stevenson. The House of Lords held that the manufacturer owed a duty of care to her, which was breached, because it was reasonably foreseeable that failure to ensure the product's safety would lead to harm of consumers.
IMPORTANT FACTORS IN PRODUCT LIABILITY

Understanding the product compare customer expectations and what the *product* does:

- purpose
- use – known – advertised – unknown;
- how could it be misused;
- how safe to use;
- what conditions to ensure safety;
- training, experience, skill;
- maintenance, service.

All above are fundamental in whole operation.
IMPORTANT FACTORS IN PRODUCT LIABILITY

The customer:

- what does customer expect;
- use/serviceability;
- duration/expense
- how does the product reach customer
- does distributor, salesman have same view of product questions above;
- range of customer;
- advertising claims

And many more such as quality control...etc
SAFETY AND THE HUMAN FACTOR
SAFETY REQUIREMENTS

Safety needs these 4 components:
1. **Awareness** of a high standard of
2. **Accountability** - individual management and staff;
3. Effective **training** to meet standard of performance;
4. System of **reward** (for good performance) and punishment (penalty for failure).
CHECKLIST: PROCESS SAFETY

Understand the operation, the equipment and skill required.
1. Keep safety regulations up to date;
2. Gain knowledge of safety technology especially in equipment and problems;
3. Know employers’ liability and workers’ compensation;
4. Study various methods of effective safety practice;
HUMAN FACTORS

YOU ARE THE KEY......

TO YOUR SAFETY
HUMAN FACTORS

Factors for safe working practice:

1. Devise safe system of operation – operating condition and environment;
2. Operator personality – selection and motivation;
3. Equipment design to prevent improper operation;
4. Procedures – non standard or unusual conditions to be reported.
HUMAN FACTORS

Human Factors Funnel Model

- Atmosphere
- Attributes
- Attitudes
- Decisions
- Actions
- Outcomes

Place
Person
What pours out the bottom

Bangkok 25 June 2014 Rev 1.0
HUMAN FACTORS

In a study of Alcoa – a company that manufactured everything from the foil that wrap Hershey’s Kisses and the metal in Coca Cola cans to the bolts that hold satellites together. In 1987, new CEO Paul O’Neill took over one of the largest, stodgiest, and most potentially dangerous companies into a profit machine and a bastion of safety. At the top of his list he wrote, “SAFETY” goal: Zero injuries.
HUMAN FACTORS

KAIZEN
CONTINUOUS IMPROVEMENT
IS OUR WAY OF LIFE

- Customer orientation
- TQC (total quality control)
- Robotics
- QC circles
- Suggestion system
- Automation
- Discipline in the workplace
- TPM (total productive maintenance)
- Kanban
- Quality improvement
- Zero defects
- Small-group activities
- Cooperative labor-management relations
- Productivity improvement
- New-product development
HUMAN FACTORS
Manager require creative productivity every day, have more in common with famous innovators than most managers realize. The workday events that ignite their emotions, fuel their motivation, and trigger their perceptions. Need to search out employees’ characteristic by:
• progressive principles of creating small wins or catalyst
 - to support everyday progress in their work
 - to help removing obstacle
 - by support through encouragement and recognition
HUMAN FACTORS

• keystone habits are the ones that, when they start to shift, dislodge and remake other patterns that can influence how people work, eat, play, live, spend, and communicate.

Will achieve 2 goals of superb workers well being and success for Company.
FIRE RISK CONTROL

Our ethos is to prevent rather than cure
FIRE RISK CONTROL

The mechanic of fire consist of 3 components or “fire triangle” as it is known:

1. **Oxygen** (which makes up a fifth of air);
 - Sources of oxygen other than air.

2. **Source of ignition**;
 - The role of heat, fire can start without a flame or spark.

3. **Fuel for the fire**;
 - Flame from material release gases that can increase the temperature
FIRE RISK CONTROL

Factors that affect fire hazard

• **Inception** – sources of ignition, manage housekeeping clearing waste that can easily be ignited.
• **Load** – assess fuel available and decide how to extinguish
• **Fire spread** – remove combustible and create gaps
• **Extinguishment** – prompt action and know the methods
• **Other Hazards** – smoke and toxic fumes
• **Special Hazards** – arson, vandalism (sprinkler system) dust fire/explosion (shock damage), water damage.
FIRE RISK CONTROL

Types of fires and extinguishing methods:

Class A
- ordinary materials e.g. Wood/paper/rag.
- water for quenching.
- dry powder – breaks up flames – layer retards further combustion.

Class B
- vapour air over surface of flammable liquids e.g. Gasoline/oil/grease/paint.
FIRE RISK CONTROL

Class C

- in/near electrical equipment
- dry chemical, CO$_2$, compressed gas vaporizing liquid.
- do not use foam/water

Class D

- on combustible metals, magnesium, titanium lithium, sodium.
- do not use normal extinguishing agents – possible adverse effects. Special extinguisher required.
FIRE RISK CONTROL

<table>
<thead>
<tr>
<th>CLASSES OF FIRES</th>
<th>TYPES OF FIRES</th>
<th>PICTURE SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wood, paper, cloth, trash & other ordinary materials.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Gasoline, oil, paint and other flammable liquids.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>May be used on fires involving live electrical equipment without danger to the operator.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Combustible metals and combustible metal alloys.</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Cooking media (Vegetable or Animal Oils and Fats)</td>
<td></td>
</tr>
</tbody>
</table>
FIRE RISK CONTROL

SOLIDS
Before solid can be ignited, it must be heated
Sufficiently to give off flammable
vapour/gaseous

LIQUIDS
- vapour produced at surface before it will burn
- vapour evolved related to surface area
- concentration – below min too weak to burn
 above max insufficient oxygen.
- if vapour density denser than air (1°C) –
 concentrate at ground level.
FIRE RISK CONTROL

Dust

- very high surface area to volume, ratio
- can spread fire across room, along ledge or roof beam, very quickly
- accumulation of dust can smoulder slowly for long periods – later sudden flare up
- some are explosive when suspended as cloud; after ignition fast flames spread through dust cloud; possible more violent secondary explosions.
FIRE RISK CONTROL

Gases
- stored industrially under pressure.
- pressure often high enough to liquefy gas – released rapid expansion

Spontaneous Heating/Combustion
- biological or chemical reaction heat is evolved at normal ambient temperatures.
- combination with atmospheric oxygen, e.g. vegetable and animal oils finely dispersed on fabrics.
- micro organism e.g. Hay are killed by temp of 75°C or above oxidation takes place and ignition
FIRE RISK CONTROL

- red for water
- blue for dry powder
- cream for foam
- black for CO2
FIRE RISK CONTROL

Fire Extinguisher Chart

<table>
<thead>
<tr>
<th>Extinguisher</th>
<th>Type of Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>Type</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Foam</td>
<td></td>
</tr>
<tr>
<td>Dry Powder</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide (CO2)</td>
<td></td>
</tr>
</tbody>
</table>
MARINE RISK CONTROL

Contracts that concerned water transportation are considered to be ocean marine insurance includes:

1. Hull insurance
2. Cargo insurance
3. Protection and indemnity insurance, a form liability insurance.
MARINE RISK CONTROL

Shipping operations can be divided to 3 main areas:

1. Liner or break-bulk operations – the carriage of individual shipments on regular or semi-regular services. Container and RO/RO (roll on/roll off ferry) operations have largely replaced traditional break-bulk shipping.

![Marine Risk Control Images]
MARINE RISK CONTROL

2. Bulk cargoes where a whole ship is devoted for a single voyage (or series of voyage) to the carriage of a single bulk cargo such as iron ore, oil, coal or grain. A single bulk cargo may be for one shipper or a number of shippers and the cargo may be bought or sold during the voyage.
MARINE RISK CONTROL

3. Specialist marine operations, such as support vessels to offshore and other operations, salvage, dredging, towage.

Changes in ship technology, such as containerisation and a high degree of automation have reduced the number of on board ships (major vessel have between 15-25 crew).
ILLUSTRATION - COAL
ILLUSTRATION COAL CARRIER
MARINE AND RELATED LIABILITIES

<table>
<thead>
<tr>
<th>Type of liability</th>
<th>Comments and coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Collision</td>
<td>Limitation under Merchant Shipping Act</td>
</tr>
<tr>
<td>Loss or damage to other ship demurrage/ Loss of use, general average sacrifice and Contribution</td>
<td>3/4<sup>th</sup> cover – under Institute Time Clauses (RDC) Other 1/4<sup>th</sup> covered by P&I Club</td>
</tr>
<tr>
<td>2. Salvage/salvage charges</td>
<td>Institute Time Clauses</td>
</tr>
<tr>
<td>3. General average contribution General average sacrifice</td>
<td>Institute Time Clauses pays General average recovery pays</td>
</tr>
<tr>
<td>4. To cargo (note limited conditions of Hague-Visby Rules)</td>
<td>Cargo owners insures risk Recovery from shipper in limited situation is Paid by P&I Club</td>
</tr>
</tbody>
</table>
MARINE AND RELATED LIABILITIES

<table>
<thead>
<tr>
<th>Types of liability</th>
<th>Comments and Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Excess liability</td>
<td>Liability in excess of insured value of ship for general average, salvage, salvage charges, sue and labour, collision liability Insurable such as Institute Excess Liabilities clauses (Hull)</td>
</tr>
<tr>
<td>6. Employers’ liability</td>
<td>P&I Club</td>
</tr>
<tr>
<td>7. Fines</td>
<td>P&I Club</td>
</tr>
<tr>
<td>8. Towage</td>
<td>Liability imposed on towed ship by towage contract for damage to tug however caused</td>
</tr>
<tr>
<td></td>
<td>P&I Club</td>
</tr>
</tbody>
</table>
MARINE AND RELATED LIABILITIES

<table>
<thead>
<tr>
<th>Type of liability</th>
<th>Comment and Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Third Party in and near ship wreck removal</td>
<td>Not covered under ITC</td>
</tr>
<tr>
<td>Damage other than collision</td>
<td>Ship owners may have limitation on a tonnage basis in ports, harbours, waterways etc.</td>
</tr>
<tr>
<td>Collision with other objects</td>
<td>P&I Club covers</td>
</tr>
<tr>
<td>10. Pollution</td>
<td>Tanker owners have limitation cover under TOVALOP/CRISTAL</td>
</tr>
<tr>
<td></td>
<td>Others including non-cargo tanks of tankers under P&I Club.</td>
</tr>
</tbody>
</table>